
International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A Fault Based Object Oriented Testing using
UML

Ravindra Kr. Gupta, Hari Ji, Gajendar Singh Chandel

Abstract— we propose a testing technique for object-oriented programs. Based on the state and collaboration models of a system, we construct

an intermediate representation, which we have named state collaboration diagram (SCOTEM). We generate test cases to achieve state-activity

coverage of SCOTEM .We have empirically evaluated the effectiveness of our approach. The results show that the proposed technique could

detect seeded integration testing faults which could not be detected by the related approaches.

The previous work of this topic is only show the state and activity model. But we can consider the event if any message deliver to an object that

behaves according to message so we can say that event based .the programming approach with the help of UML (unified modeling language) to

generate the text file for collaboration diagram and the prototype model is used for the testing of path generated by that prototype model. My

testing work is based on path based, path is generated with the help of UML diagram, and it shows the message sequence number it’s also

provide the source to target path, object, transition state. Transition shows the message imitate from source to destination. And the message

passing according to the sequence number each, sequence number identifies the separate massage.

Index Terms— UML based testing, Automatic test case generation, state diagram, collaboration diagram, Mutation testing.

—————————— ——————————

1 INTRODUCTION

he object oriented paradigm provides a lot of benefits like

encapsulation, abstraction, inheritance and reusability to

improve the quality of software because the reusability reduc-

es the code. The reduction of code is very important things in

the programming because if we are uses the many times of the

code its only show the wastage of memory and increases the

code. Hence the object oriented technology or concept is very

beneficial for the reeducation of code. The object oriented fea-

tures are use to detect the defect in the class testing .because

the different class are integrated to each other so the faults

may be occur. The UML has used to notation and graphical

representation for the object and message also use to capturing

the Message source to destination generally UMLs model is

used to design the different types of diagram before the devel-

opment of any software.UML models are used are used to

source information in software testing [17, 11]. Many UML

design artifacts have been used in different ways to perform

different kinds of testing. For instance, UML state charts have

been used to perform unit testing, and interaction diagrams

(collaboration and sequence diagrams) have been used to test

class interactions. Modularity aims at encapsulating related

functionalities in classes. However, complete system-level

functionality (use case) is usually implemented through the

interaction of objects. Typically, the complexity of an OO sys-

tem lies in its object interactions, not within class methods

which tend to be small and simple.

2 Related Works

Traditional testing strategies for procedural programs, such as

data flow analysis and control flow analysis cannot be directly

applied to OO programs [35]. Extensions of these techniques

for OO programs have been proposed by Buy et al. [26] and

Martena et al. [4]. A structural test case generation strategy by

Buy et al. [26] generates test cases through symbolic execution

and automates deduction for the data flow analysis of a class.

Kung et al. [36] proposed an idea to extract state models from

the source code, whereas others suggest test generations from

pre-existing state-models [11 and 40]. In the sections below,

we will discuss more specific UML-based testing techniques.

Automatic test case generation from UML diagrams has re-

ceived considerable attention from researchers [22, 7, 28].

There have been attempts to generate test cases from UML

activity diagrams [16, 25]. Others have worked on UML state

chart diagrams [4]. UML activity diagram-based test case gen-

eration has been investigated in [25] by Lizhang et al. They

have generated test cases using a gray box method. In their

approach, test scenarios are directly derived from the activity

diagrams modeling an operation. This method deals with the

logical coverage criteria of white box method and finds all the

possible paths from the design model which describes the ex-

pected behavior of an operation. Subsequently, all the informa-

tion for test case generation (i.e. input/output sequence para-

meters, the constraint conditions and expected object method

sequences) is extracted from each test scenarios. Finally, they

generate the possible values of all the input/output parameters

by applying category-partition method [17]. It generates test

cases which can achieve the path coverage. But this method

T

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ignores information about the state of the objects within the

system at any time of execution.

That is, the system takes input data, performs some computa-

tions, and outputs the result. They proposed a novel algorithm

to generate thin threads from activity diagrams, which in-

cluded preprocessing of the system level activity diagrams,

converting them into activity hyper graphs and then deriving

all execution paths from the graph. Their method does not

contain any state information for the objects of the system.

Chen Mingsong et al. [16] presented an idea to obtain the re-

duced test suite for an implementation using activity dia-

grams. They considered the random generation of test cases

for Java programs. Running the programs with applying the

test cases, they obtained the program execution traces. Finally,

a reduced test suite is obtained by comparing the simple paths

with program execution traces. Simple path coverage criterion

helps to avoid the path explosion due to the presence of loops

and concurrency. Offutt and Abdurazik [10, 9] developed a

technique for generating test cases from UML state diagrams.

They generate test cases automatically from change events for

Boolean class attributes. They were successful in developing

several useful coverage criteria that are based on UML state

charts. Their approach targets class-level testing. Their ap-

proach achieves transition coverage, full predicate coverage

and transition-pair coverage. They also provide useful insights

on including test prefixes that contain inputs necessary to put

the software into the appropriate state for the test values.

3. Defining the SCOTEM test Model

The SCOTEM is a specific graph structure: A vertex corres-

ponds to an instance of a class (in a particular state) articipat-

ing in the collaboration.A Modal Class can receive a message

in more than one state and exhibit distinct behavior for the

same message in different states. To capture this characteristic,

for modal classes, the SCOTEM contains multiple vertices,

where each vertex corresponds to an instance of the class in a

distinct abstract state (corresponding to states defined in state

charts). On the other hand, a non-modal class only requires a

single vertex in the SCOTEM graph.The edges in the SCOTEM

test model are of two types: message and transition edges. A

message edge represents a call action between two objects, and

a transition edge represents a state-transition of an objection

receiving a message. Each message edge may also contain a

condition or iteration. Each message may cause a state transi-

tion to occur. A transition edge connects two vertices of the

same class. State charts may have multiple transitions to dis-

tinct states for the same operation. Hence, there may be mul-

tiple transition edges (representing a conditional state transi-

tion) for the same message edge in SCOTEM. Each of these

transitions is generally controlled by mutually exclusive con-

ditions (to prevent non-determinism). The internal representa-

tion of a vertex holds the class name and state of the instance it

corresponds to. Message edges are modeled in the SCOTEM

by attributes of a message including message sequence num-

ber, associated operation, receiver object, and the sender ob-

ject. The transition edges are modeled by the attributes of a

transition including sequence number, associated operation,

accepting state and sending state. The proposed model graph-

ical representation present in fig1.

.

All pap

3 SECTI

Fifg1 proposed model for testing

4. Constructing the SCOTEM

It’s based on the path generation the path generation is tuff

task if the number of path increases. The single path calcula-

tion is easy but if the path is complicated the manual calcula-

tion is tuff but his model provides the automated path genera-

tion facility.

The example used consists of an implementation of a Question

Calculation (QC). In its comprehensive form, user can login

the system. The user enter the correct login and password then

he get the question for solving he can solve the question and

he put the answer correct the system show the result and

grade. And next question show for solve user, solve correct or

incorrect system show accordingly pass fail or grade.

The implementation of QC that we consider in our example is

a restricted form of the assessment mode that deals with the

addition operation only. Currently, the application presents

questions one by one, one after the other, for user/ students.

Students are given unlimited time to solve each problem, but a

SCO-

TEM

Gener-

ation

Text

Paths
Gener-

ation

Pass/Fail

Text

Paths

SCO-

TEM

Coverage
Criteria

Collabora-

tion

Diagram

Statechart
/Events

Test
Data

TextPaths

Genera-
tion

Execution
Log

Evalu-

ator

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

counter can count the question and the condition operation

can provide the condition and according to condition system

show the grade and pass fail status. The system is very simple

firstly the student login the system if that is correct then he

will login the system. If the user id incorrect the massage you

get from the system please enter the correct id. And the pass-

word is incorrect the system shows the message insert correct

id. After login the system show the question and option to

user input the answer from keyboard then the condition oper-

ator count the answer of the question if three questions are

correct the system show the pass and grade of that user.

Display() is used for login the system if the correct user show

the system login is correct.Login'@'Unautorized.

Login instants can be also proved I the other form of admin

and user. After login the Display_quest() function can be re-

sponsible for the displaying the question. The answer if the

answer is correct three or more than three the grade will dis-

play according to question.

The Tracking () function can responsible for the tracking of the

question to display the question accordingly the sequence

number.

ShowResult() function responsible for the displaying the result

overall the completion of the question and also show the grade

of the user who solving the question

Class diagram

5.0 Case study

A class diagram of QC system created using rational rose tool

has been considered for test case automation process. This

program user can initiate with the help of login in two of any

one mode like user or admin mode.We have validate the pro-

posed approach with the help of an program like question

checker first of all the person or admin login the system the

class login responsible for login the user or admin. After the

login system display the question with the option to select the

person for appropriate question. Tracking class track how

many number of question solved by user .only five questions

are show here user can solve the entire question or switch

from one or more questions. The show result function and the

grading function display the result of the user if the user can

solved below the three questions. The result function can

show the user is fail because the condition is applied if less

than three question user failed above the three or three shows

the pass. Grade function can show the grade a,b,c, according

to the solved question if solved question is three the grade is

c,solved question is four grade is shown b,if solved question is

five grade is shown a.

 Table1: Test case for QC system.

S.No. Sequence

Result

1 Login id & password valid Valid

2 Login id valid password

invalid

Invalid

3 Login id invalid password

valid

Invalid

Login

Int flaf=0

Char id[5]

Int password

Int j

Display_question

dsp

Display(char

ch,int pass)

Dsp.question()

Display_question

Char ans=’\0’

Switch(n)

Tracking track

Showresult s

Tracking()

s.result()

showresult

Int count=0

Grading grad

Showresult s

Grad.Grad(count)

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

4 Loginid=abcd, Pass-

word=12345

Valid

5 Loginid=abca, pass-

word=12345

Invalid

6 Loginid=abcb, pass-

word=12345

Invalid

7 Loginid=abca, pass-

word=12345

Invalid

8 Loginid=bcab, pass-

word=12345

Invalid

9 Loginid=cdba, pass-

word=12345

Invalid

10 Loginid=abcd, pass-

word=12341

Invalid

11 Loginid=abcd, pass-

word=12354

Invalid

12 Logindid=abcd, pass-

word=13245

Invalid

13 Loginid=abcd, pass-

word=32145

Invalid

14 Option=A,B,C,D,E,for answer Valid

15 Option=a,b,c,d,for answer Invalid

16 If condition <=3,for grade A Invalid

17 If condition <=4,for grade A Invalid

18 If condition <=5,for grade A Invalid

19 If condition <=3,for grade B Invalid

20 If condition <=2,for grade A Invalid

21 If condition >=5,for grade A Valid

22 If question solved<=1,fail Valid

23 If question solved<=2,fail Valid

24 If question solved >=3,Pass

grade C

Valid

25 If question solved >=4,Pass

grade B

Valid

26 If question solved >=5,Pass

grade A

Valid

27 If question solved option is E

to Z

Invalid

28 Question solved option is

A,B,C,D

Valid

6. Mutation Testing

The best effectiveness of test cases can be evaluated using the

fault is injected in the program. The fault injected technique is

called mutation analysis. Mutants are created for the testing its

only change the same type of operators or condition. Like the

condition <= or >=, data change, operation change. Mutation

testing is a process by which faults are injected in the system

to verify the efficiency of the test case. Mutation based analysis

is a fault based testing strategy that starts with a program to

be tested and makes numerous small syntactic changes into

the original program. In a program with injected faults is

called MUTANTS. The faults are inserted and tested in the

following manner .one faulty version of program is created at

a time and run against all the test cases one by one until either

fault is revealed or all test cases are executed. a fault is consi-

dered to be revealed, if the output of faulty version of program

is different from the original program on the same input. If a

test case set is capable of causing behavioral differences be-

tween original program and mutant, mutant is considered as

killed by test. The product of mutation analysis is a measure

called mutation score, which indicates the percentage of mu-

tants killed by a test set. Mutants are obtained by applying

mutation operators that introduce the simple changes to origi-

nal program (or specification). The faults are kept in separate

version of the program to avoid interactions between such as

masking.

6.1 Fault Inject

The test cases divided in different part .for the question check-

er process the following parameter is listed in Table 2 were

considered for mutation analysis process. Our test case pro-

gram the testing is based on the mutation. The mutation test-

ing first of faults inject in the program. The mutants are the

similar values injected in the program which we are called

seeds in the program. For the QC class diagram we consider

50 mutants that use the mutation operator as show in Table 2.

The summary of the mutants are show in Table3.

Table 2: operator and description

S.No. Operator Description

1 Function Replace the name of the function

2 Loop Changes the value of loop

3 Condition Change the condition

4 Arguments Change the function arguments

5 Data value Replace the name of Data

6 Relation opera-

tor

Replace the relational operator

7 Missing state-

ment

Missing the statement

Table3: Summary of mutants for question checker system.

Operator Faults Inject Faults Found

Function 4 4

Loop 4 3

Condition 5 3

Arguments 5 5

Data value 24 20

Relation operator 3 2

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Missing statement 5 4

Function:-We can change the name of the function no proto-

type tool provides the facility to trace the function.

Loop:-We can change the value of loop, so loop cannot execute

all values.

Condition: - Condition can change some value can get some

value and some cannot get.

Arguments: - We can change the arguments of the function.

Data values: - Data values can change to create mutants.

Relation operator:-This operator removes the relation condi-

tion of message.

Missing statement: - This operator responsible for missing the

values.

6.2 Mutation Score

The product of mutation analysis is a measure called Mutation

Score, which indicates the percentage of mutants killed by a

test set. Mutation score, which indicates the percentage of mu-

tants killed by a test set .Mutation score, is founded by com-

paring the faults injected to faults found.

Score= (∑fault found/∑fault injected)

In the QC system application we inject 50 faults and 40 were

revealed from the test cases generated. Using the above for-

mula we get 80.0% score for QC collaboration diagram which

shows efficiency level of our approach. It is diagrammatically

represented in the form of bar chart as shown in figure. 8

0 5 10 15 20

missing St.

R.operator

data value

argument

condition

loop

function

Fault Found

Fault Inject

Fig 8.Mutation Operators

We also performed unit level testing and integration level test-

ing and whose results is summarized in Table 4.

Faults Number

of Faults

Inserted

Faults Found by

M. Prasana Ap-

proach[10]

Faults

Found by

our ap-

proach

Unit

Faults

30 23(76.6%) 24(80%)

Integration

Faults

18 15(83%) 16(88%)

Unit fault by previous approach (%) = 23x100/30=76.6

Unit fault by our approach (%) =24x100/30=80

Integration fault by previous approach (%) =15x100/18=83

Integration fault by our approach (%) =16x100/18=88

Conclusion

Our work is a model based approach is dealing with the object

behavior. We have presented a technique to generate test cases

automatically from state diagram of a particular use case and

statechart diagram of participating object in a use case. Our

experimental results shown that it has the capability to revel

80% fault in the unit level and 88% fault in the integration lev-

el. So we can say the integration level testing is more powerful

than unit level testing. Our approach is meant for cluster level

testing where object interactions are tested by considering

state-transitions of objects and the corresponding activities

taking place in a use case. Our algorithm generates test condi-

tions, scenarios and object-method sequences from SCOTEM

using state-activity coverage. Our approach is used to exercise

activity synchronization in the context of multiple state com-

binations in order to detect synchronization of state as well as

activity faults within a use case of the system. We have im-

plemented a prototype tool based on our approach and have

used it satisfactory on QC example problems.

In the present work, we have assumed that the test data for

each test case would be selected manually by the tester. Select-

ing test data for a large number of test cases would be tedious

and time consuming. So we want to take up automatic genera-

tion of test data from test specifications as a future work. We

are also now investigating how other UML models can be

used to achieve higher test coverage. The same method can be

uses for the use case diagram and multipath approach.

Future work

In my approach I am discussing that the SCOTEM model is

based on the state diagram and the collaboration for the class

integration testing on the base of graph. We can detect the

state faults during the integration.the proposed algorithm can

be applied for other UML diagram like Use-

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

case,Sequence,Activity diagram for generating test cases as

further research in this direction.

References

[1] [1] (i) R.V. Binder, Testing Object-Oriented Systems - Models, Pat-

terns, and Tools, Addison-Wesley, 2000.

[2] (ii) Caleton Technical ReportSCE-05-02.

[3] [2] B. Beizer, Software Testing Techniques, 2nd Edition, Van Na-

strand Ranhald, 1990.

[4] [3] B. Bruegge, A.H. Dutoit, Object-Oriented Software Engineering:

Using UML, Patterns and Java, Prentice Hall, Second Edition, 2003.

[5] [4] G.J. Myers, The Art of Software Testing, John Wiley and Sons,

1979.

[6] [5] A. Baldini, A. Benso, P. Prinetto, System-level Functional Testing

from UML Specifications in End-of-production Industrial Environ-

ments, International Journal of Software Tools Technology and

Transfer, Vol. 7 (4), 2004, pp. 326- 340.

[7] [6] L. Briand, Y. Labiche, Y. Wang, An Investigation of Graph-Based

Class Integration Test Order Strategies, IEEE Transactions on Soft-

ware Engineering, Vol. 29 (6), 2003, pp. 594 - 607.

[8] [7] L.C. Briand, M. Di Penta, Y. Labiche, Assessing and Improving

State-Based Class Testing: A Series of Experiments, IEEE Transac-

tions on Software Engineering, Vol. 30 (11), 2004, pp. 770-793.

[9] [8] A. Cavalli, S.M. Maag, S. Papagiannaki, G. Verigakis, From UML

Models to Automatic Generated Tests for the dotLRN e-learning

Platform, Electronic Notes in Theoretical Computer Science, Vol. 116

(1), 2004, pp. 133-144.

[10] [9] M.E. Delamaro, J.C. Maldonado, A.P. Mathur, Interface Mutation:

An Approach for Integration Testing, IEEE Transactions on Software

Engineering, Vol. 27 (3), March 2001, pp. 228-247.

[11] [10] L. Gallagher, A.J. Offutt, A. Cincotta, Integration Testing of Ob-

ject-oriented Components using Finite State Machines, Journal of

Software Testing, Verification, and Reliability, January 2006.

[12] [11] Y.G. Kim, H.S. Hong, D.H Bae, S.D. Cha, Test cases generation

from UML State Diagrams, IEEE Software, Vol. 146(4), 1999, pp.187-

192.

[13] [12] Y. Le Traon, T. Jeron, J.M. Jezequel, P. Morel, Efficient Object-

oriented Integration and Regression Testing, IEEE Transactions on

Reliability, Vol. 49 (1), March 2000, pp. 12-25.

[14] [13] Y. Ma, J. Offutt, Y. Kwon, MuJava: An Automated Class Muta-

tion System, Journal of Software Testing, Verification and Reliability,

Vol. 15 (2), June 2005, pp. 97-133.

[15] [14] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, Generating Test

Data from State-based Specifications, Journal of Software Testing,

Verification and Reliability, Vol. 13 (1) , 2003, pp. 25-53.

[16] [15] A.S.M. Sajeev, B. Wibowo, UML Modeling for Regression Test-

ing of Component Based Systems, Electronic Notes Theoretical

Computer Science, Vol. 82(6), 2003, pp.1-9.

[17] [16] S.R.S. de Souza, S.C.P.F. Fabbri, W.L. de Souza, J.C. Maldonado,

Mutation Testing Applied to Estelle Specifications, Software Quality

Journal, Vol. 8 (4), 1999, pp. 285-301.

[18] [17] A. Abdurazik, J. Offutt, Using UML Collaboration Diagrams for

Static Checking and Test Generation, Proceedings of the Third Inter-

national Conference on the Unified Modeling Language (UML '00),

York, UK, October 2000, pp. 383-395.

[19] [18] P. Ammann, J. Offutt, and H. Huang, Coverage Criteria for Logi-

cal Expressions, Proceedings of the 14th International Symposium on

Software Reliability Engineering, (ISSRE’03), 2003, pp. 99-107.

[20] [19] J.H. Andrews, L.C. Briand and Y. Labiche, Is Mutation an Ap-

propriate Tool for Testing Experiments?, Proceedings of the IEEE

27th International Conference on Software Engineering (ICSE) 2005,

St. Louis, Missouri, USA, May 2005, pp. 15-21.

[21] [20] F. Basanieri, A. Bertolino, A Practical Approach to UML-Based

Derivation of Integration Tests, Proceedings of the Software Quality

Week QWE2000, 2000.

[22] [21] F. Basanieri, A. Bertolino, E. Marchetti, COWTest: Cost Weighted

Test Strategy, Proceedings of the ESCOMSCOPE, London, England,

2001, pp. 387-396.

[23] [22] A. Bertolino, E. Marchetti, Introducing a Reasonably Complete

and Coherent Approach for Model-based Testing, Proceedings of the

International Workshop on Testing and Analysis of Component-

based Systems (TACoS 2004), Electronic Notes in Theoretical Com-

puter Science, 2004, pp. 85-97.

[24] [23] L. Briand, Y. Labiche, A UML-Based Approach to System Test-

ing, Proceedings of the Fourth International Conference on the Uni-

fied Modeling Language (UML’01), 2001, pp. 194-208.

[25] [24] L. Briand, Y. Labiche, G. Soccar, Automating Impact Analysis

and Regression Test Selection Based on UML Designs, Proceedings of

the International Conference on Software Maintenance (ICSM'02),

Canada, 2002, pp. 252- 261.

[26] [25] L.C. Briand, J. Cui, Y. Labiche, Towards Automated Support for

Deriving Test Data from UML Statecharts, Proceedings of the

ACM/IEEE International Unified Modeling Language conference

(UML 2003), July 2003, pp. 249- 264.

[27] [26] U. Buy, A. Orso, M. Pezze, Automated Testing of Classes, Pro-

ceedings of the International Symposium on Software Testing and

Analysis, ACM Press, 2000, pp. 39–48.

[28] [27] P. Chevalley, P. Thevenod-Fosse, Automated Generation of Sta-

tistical Test Cases from UML State Diagrams, Proceedings of the 25th

Annual International Computer Software and Applications Confe-

rence (COMPSAC'01), 2001,pp. 205-214.

[29] [28] F. Fraikin, T. Leonhardt, SeDiTeC - Testing Based on Sequence

Diagrams, Proceedings of the 17th IEEE International Conference on

Automated Software Engineering (ASE'02), 2002, pp. 261-266.

[30] [29] P. Frohlich, J. Link, Automated Test Case Generation from Dy-

namic Models, Proceedings of the 14th European Conference on Ob-

ject-Oriented Programming, 2000, pp: 472 – 492.

[31] [30] J. Hartmann, C. Imoberdorf, M. Meisinger, UML-Based Integra-

tion Testing, Proceedings of the International Symposium on Soft-

ware Testing and Analysis (ISTA’00), 2000, pp. 60 - 70.

[32] [31] A. Hartman, K. Nagin, AGEDIS Tools for Model-Based Testing,

Proceedings of the International Symposium on Software Testing

and Analysis (ISTA’04), pp. 129-132.

[33] [32] S. Gnesi, D. Latella, M. Massink, Formal Test-Case Generation

for UML Statecharts, Proceedings of the Ninth IEEE International

Conference on Engineering Complex Computer Systems

(ICECCS'04), 2004, pp. 75- 84.

[34] [33] S. Kansomkeat, W. Rivepiboon, Automated-Generating Test

Case Using Statechart Diagrams Test Case Using UML Statechart Di-

agrams, Proceedings of the Annual Research Conference of the South

African Institute of Computer Scientists and Information Technolo-

gists on Enablement through Technology, 2003, pp. 296-300.

[35] [34] S. Kim, L. Wildman, R. Duke, A UML Approach to the Genera-

tion of Test Sequences for Java-based Concurrent Systems, Proceed-

International Journal of Scientific & Engineering Research Volume 3, Issue 5, May-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

ings of the 2005 Australian Software Engineering Conference (AS-

WEC’05), 2005, pp. 100-109.

[36] [35] D.C. Kung, N. Suchak, P. Hsia, Y. Toyoshima, C. Chen, On Ob-

ject State Testing, Proceedings of the 17th Annual International

Computer Software and Applications Conference (COMPSAC'94),

1994.

[37] [36] D.C. Kung, P. Hsia, Y. Toyoshima, C. Chen, J. Gao, Object-

Oriented Software Testing- Some Research and Development, Pro-

ceedings of the 3rd IEEE International Symposium on High-

Assurance Systems Engineering (HASE'98), November 1998, pp. 158

- 165.

